BEHAVIOR OF COMPOSITE STEEL COLUMNS IN-FILLED WITH SELF-COMPACTION CONCRETE UNDER CYCLIC LOADING

¹Edara Ramesh Babu, ²Dr N S Kumar

¹Assiciate Professor, ²Professor ^{1,2}Department of Civil Engineering ^{1,2}Ghousia College of Engineering, Ramanagaram, India

Abstract: In the present study, the behavior of self-compacting Concrete Filled Steel Tube (CFST) columns under cyclic loading has been tested. The experimental investigations are carried out for 72 specimens that includes eighteen hollow steel specimens and fifty four specimens filled with Self compacting concrete (SCC) of grade M20, M30 and M40 with different L/D ratios. The parameters such as the geometric properties of the column section specimens with different L/D ratios, diameters with constant thickness and different grades of self-compacting infill concrete have been considered during the test. It is found that the capacity of buckling load and deformations are obtained from testing under cyclic loading, the buckling or ultimate load for CFST columns are higher compare to hollow columns, also the confinement of infill concrete increases the load carrying capacity these results are verified and validated using Finite element software ABAQUS6.10.1

IndexTerms - SCC-self compacting concrete, CFST- concrete filled steel tube, cyclic loading.

I. INTRODUCTION

Self-compaction concrete (SCC) is preferable for replacement of conventional concrete in the highly congested reinforced structures because it is difficult to compact. SCC is a special type of concrete which is flowable and non-segregating concrete and placed easily and compacted under its own self weight, so no need of any mechanical vibrator for placing and filling the CFST columns [1, 2].

CFST columns have high strength, ductility and are good in earth quake resistance with good energy absorption capacity [3]. Concretefilled steel tubular (CFST) columns have gained pleasant appearance for buildings, bridges and other types of structures. CFST columns become trendy with designers also structural engineers. CFST columns come together the structural property and compensation together steel and concrete resources [4]. They assist to increase the speed of construction while the steel tube acts like a shoring through the solid pour, subsequently this leads toward economy in the concrete pouring method by eliminating the require for formwork [5]. Further reward is the elevated strength and raise of the structural firmness [6, 7].

CFST columns contain high load bearing capability and high seismic fighting [8, 9]. Steel tube provide captivity to the solid infill, which here acts like a bear to the steel pipe and limited inmost buckling of the section and CFST columns contain an smart appearance and compact section. Due to application of cyclic loading on columns or structural components, subjected to repeated or fluctuating stresses and strains on structural components [10, 11].

II. OBJECTIVES

- 1. To know the behavior self-compaction concrete filled steel tubes under cyclic loading.
- 2. To understand the variation of ultimate load or buckling load at different lengths and at different diameters.
- 3. To know the failure mechanism of composite steel and hollow steel when subjected to cyclic loading.

III. MATERIALS

Self-Compacting Concrete

Self-compacting concrete (SCC) is a fresh construction material among enhanced properties like higher strength, longer durability and higher workability than normal concrete [12]. As per IS 10262; 2009 mix proportion for SCC are listed in table 1 [13].

Material	M20	M30	M40
Cement	323.63kg/m ³	400kg/m^3	445kg/m ³
Fine	1090.89	1074.49	1015.72
aggregate	kg/m ³	kg/m ³	kg/m ³
Coarse	879.13	857.18	831.04
aggregate	kg/m ³	kg/m ³	kg/m ³
W/C ratio	0.55	0.45	0.40
Super	0.00611	0.006	0.0070
plasticizer	kg/m ³	kg/m ³	kg/m ³
Mix	1:3.320:	1:2.727:2.14	1:2.282:1.86
proportion	2.716	2	7
C:FA:CA			

Table 1 Mix proportions of SCC concrete

Super Plasticizer

Super plasticizer is a chemical complex used to enhance the workability lacking addition extra water. Conplast SP 430 is added by 2% of cement weight.

Structural steel

Steel is the material used in the current work where hot rolled steel tube These steel tubes are having a tensile strength 500MPa, yield strength 310MPa, elastic modulus 210GPa and a Poisson's ratio 0.3 [14]. The dimensions of specimens shown in table 2.

Diameter (mm) D	D/T	L/D	Thickness (mm) T	Length(mm) L
		6	3.2	202.2
		8	3.2	269.6
		10	3.2	337
33.7	10.5	12	3.2	404.4
		14	3.2	471.8
		16	3.2	539.2
		6	3.2	254.4
		8	3.2	339.2
42.4	13.3	10	3.2	424
	1000	12	3.2	508.8
· · ·	1000	14	3.2	594.6
		16	3.2	678.4
0		6	3.2	289.8
		8	3.2	386.4
	í Í	10	3.2	483
48.3	15.1	12	3.2	579.6
N 1. 19		14	3.2	676.2
		16	3.2	772.8

Table 2 Geometrical properties of hollow steel column

IV. EXPERIMENTAL PROGRAMME

Figure 1: Cyclic loading machine

The SCC of three different grades is filled in the steel tubes, cured for 28days, and one set of hollow steel specimens tested other specimens infill with different grades of SCC concrete with different L/D ratios tested under cyclic loading machine. Figure 1 shows the cyclic loading machine setup and using the SCADA software the results were obtained.

V. MODELING ABAQUS6.10-1

ABAQUS is universally useful programming software, used in a various fields engineering. In civil engineering it is used to determine the behavior of a composite material may be of steel or steel concrete composite. ABAQUS software is utilized to determine the analytical load acting on concrete filled steel tubes. Figure 2 shows the buckling of typical model of the CFST column modelled using ABAQUS software.

Figure 2. Buckling shape of column section

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS:

The experimental results are denoted as Pu_{EX} and are presented in the Tables 3 to 7. Figures 3 to 6 represents the load v/s deflection curves for specimen of outer diameter 42.4 and thickness 3.2 mm under cyclic loading. The values show that with increase in L/D ratio the value of that Pu_{exp} decreases. Thus with increase in length the load bearing capacity decreases. From the experimental investigation it was found that the Ultimate load strength of SCC filled steel column sections was about 12-20% higher than that of the hollow steel tubes. Figure 7 shows the variation of buckling loads for L/D ratio of 12 for hollow and different grades of SCC as infill grades of M20, M30 and M40.

Table 3 Hollow steel tube of length 508.80 mm, outer dia 42.4.mm and thickness 3.2mm

Load (KN)	Deflecti	Strain	Stress (N/Samm)	
		0	(14)54.1111)	
30	0.15	0.00029	76 12667	
60	0.3	0.00059	152.25335	
85	0.5	0.00098	215.69225	
60	0.35	0.00069	152.25335	
75	0.56	0.00110	190.31669	
100	0.9	0.00177	253.75558	
120	1.25	0.00246	304.50670	
90	1.04	0.00204	228.38002	
125	1.49	0.00293	317.19448	
140	1.9	0.00373	355.25782	
110	1.75	0.00344	279.13114	
95	1.7	0.00334	241.06780	
140	2.14	0.00421	355.25782	
160	2.5	0.00491	406.00893	
120	2.45	0.00482	304.50670	
150	2.65	0.00521	380.63337	
170	3	0.00590	431.38449	

Table 4 M20 steel tube of length 508.80 mm, outer dia 42.4.mm and thickness 3.2mm

Load	Deflection	Strain	Stress
(KN)	(mm)		(N/Sq.mm)
0	0	0.00000	0.00000
33	0.15	0.00029	65.67687
67	0.31	0.00061	133.34395
80	0.42	0.00083	159.21665
55	0.3	0.00059	109.46145
100	0.62	0.00122	199.02082
120	0.8	0.00157	238.82498
80	0.7	0.00138	159.21665
100	0.78	0.00153	199.02082
145	1.2	0.00236	288.58019
90	1	0.00197	179.11874
120	1.16	0.00228	238.82498
150	1.45	0.00285	298.53123
170	1.63	0.00320	338.33539
110	1.47	0.00289	218,92290

Load	Deflection	Strain	Stress
(KN)	(mm)		(N/Sq.mm)
135	1.56	0.00307	268.67810
160	1.7	0.00334	318.43331
180	1.98	0.00389	358.23747
150	1.75	0.00344	298.53123
125	1.65	0.00324	248.77602
185	2.2	0.00432	368.18851
200	2.45	0.00482	398.04164
150	2.4	0.00472	298.53123
190	2.8	0.00550	378.13955
206	2.95	0.00580	409.98288

Table 5 M30 steel tube of length 508.80 mm,	outer dia 42.4.mm and thickness 3.2mm
---	---------------------------------------

Load (KN)	Deflectio n (mm)	Strain	stress (N/Sq.mm)	
0	0	0.00000	0.00000	
35	0.16	0.00031	66.43635	
60	0.25	0.00049	113.89089	
80	0.35	0.00069	151.85452	
50	0.28	0.00055	94.90908	
100	0.5	0.00098	189.81815	
125	0.76	0.00149	237.27269	
90	0.7	0.00138	170.83634	
75	0.68	0.00134	142.36362	
100	0.85	0.00167	189.81815	
120	1.1	0.00216	227.78179	
150	1.3	0.00256	284.72723	
125	1.25	0.00246	237.27269	
100	1.15	0.00226	189.81815	
130	1.45	0.00285	246.76360	
175	2.2	0.00432	332.18177	
130	1.9	0.00373	246.76360	
110	1.85	0.00364	208.79997	
150	2.5	0.00491	284.72723	
190	2.75	0.00540	360.65449	
205	2.84	0.00558	389.12722	
214	3.15	0.00619	406.21085	

Table 6 M40 steel tube of length 508.80 mm, outer dia 42.4.mm and thickness 3.2mm

Load (KN)	Deflection (mm)	Strain	Stress (N/Sq.mm)
0	0	0.00000	0.00000
40	0.14	0.00028	73.07271
90	0.32	0.00063	164.41359
60	0.28	0.00055	109.60906
100	0.4	0.00079	182.68177
135	0.6	0.00118	246.62039
90	0.42	0.00083	164.41359

Load (KN)	Deflection (mm)	Strain	Stress (N/Sq.mm)
130	0.62	0.00122	237.48630
160	0.85	0.00167	292.29083
120	0.73	0.00143	219.21812
98	0.65	0.00128	179.02813
125	0.85	0.00167	228.35221
160	1.1	0.00216	292.29083
190	1.45	0.00285	347.09536
150	1.4	0.00275	274.02265
120	1.3	0.00256	219.21812
170	1.45	0.00285	310.55901
200	1.88	0.00369	365.36354
170	1.65	0.00324	310.55901
140	1.5	0.00295	255.75448
185	1.9	0.00373	337.96127
210	2.2	0.00432	383.63171
150	2	0.00393	274.02265
175	2.25	0.00442	319.69309
210	2.84	0.00558	383.63171
227	3.15	0.00619	414.68761

Figure 4 Load vs. deflection curve for CFST column with SCC M20 infill

.Figure 5 Load vs. deflection curve for CFST column with SCC M30 infill

Figure 6 Load vs. deflection curve for CFST column with SCC M40 infill

Table 7 Buckling load for CFST columns with different L/D ratios and grades of SCC

Case	Outer Dia. in mm	L/D	Exp. Load (KN)	ABAQUS Load(KN) Pu _{ABQ}
		6	142	140
	-()	8	140	139
	777	10	138	136
	33.1	12	135	133
		14	125	128
		16	112	116
EL		6	179	195
IE		8	177	190
S SEG	10.1	10	174	186
MO E	42.4	12	170	174
1 L		14	154	152
OF		16	136	140
H .	48.3	6	213	224
		8	211	218
		10	209	214
		12	206	208
		14	185	190
		16	170	177
		6	167	166
WC	33.7	8	164	165
Ц.		10	160	162
RADE NFILI		12	156	154
		14	148	142
0 G		16	124	131
M2(6	216	221
1	42.4	8	213	219

	10	210	215
	12	206	209
	14	193	195
	16	176	178
	6	249	260
	8	246	258
	10	244	254
48.3	12	233	237
	14	224	228
	16	208	217

Continuation of Table 7

Case	Outer Dia. in mm	L/D	Exp. Load (KN)	ABAQUS Load(KN) Pu _{ABQ}
		6	176	178
Bern		8	172	174
107-2	22.7	10	168	170
	33.7	12	163	160
<i>p</i>		14	150	153
h.		16	136	145
NC	1 I.S.	6	223	227
L'E	4	8	220	223
DE	12.4	10	217	219
INF INF	42.4	12	214	212
0 0		14	198	202
M3		16	184	188
		6	276	282
		8	273	279
	48.3	10	268	273
		12	260	263
	1	1 <mark>4</mark>	246	249
	KA .	16	228	235
		_ 6 💛	183	180
	33.7	8	180	178
		10	177	175
		12	173	172
		14	161	165
		16	146	160
VC		6	235	233
TV		8	233	231
DE		10	230	227
RA NF	42.4	12	227	224
DC		14	211	215
M4(16	198	205
		6	290	297
		8	287	295
	10.2	10	284	289
	48.3	12	280	285
		14	264	272
		16	242	245

JETIR1804034 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 171

CONCLUSION

- The ultimate load carrying capacity of SCC filled steel tubes is about 12-20% higher than hollow steel tubes from the figure 3, 4, 5 and 6.
- The local buckling is delayed in CFST compared to the hollow steel columns.
- With increase in grade of concrete the ultimate load increases marginally by 3-5%. Thus the load verses deflection curve is shifted higher for higher grades of SCC.
- As L/D ratio increases, the load carrying capacity of the composite tube decreases.
- The variation of experimental results and obtained using ABAQUS software is 2-5 percent.

REFERENCES

- [1] Chu Thi Binh, T. gernay, Jean-Claude dotreppe, and Jean-Marc franssen, "Steel hollow columns with an internal profile filled with self-compacting concrete under fire conditions," *Hanoi Architectural Univ, Dept. of Civil Engineering, Vietnam 2 Univ. of Liege, Dept.*.
- [2] H. Eramma and B. R. Niranjan, "Experimental behavior of Self Compacting Concrete Filled Steel Rectangular Fluted Columns for Concentric Load," University Visvesvaraya College of Engineering, J.B. Campus, Bangalore University Bangalore- 560056 India.
- [3] Mohamed Mohamed Adel Ghannam, "Behavior of concrete-filled stainless steel columns under fire conditions," Mansoura University, Egypt.
- [4] K. Wang and B. Young, "Fire Resistance of Concrete-filled High Strength Steel Tubular Columns" Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 2013," The University of Hong Kong, Pokfulam Road, Hong Kong 2013.
- [5] Silpa C. K, Ramesh Babu E, and Kumar N.S, "Experimental investigation on Composite Column Subjected to Cyclic loading," *International Journal of Research in Engineering and Technology*, vol. 5, pp. 293-298, 2016.
- [6] Chung, Kyung-Soo1, Park, Su-Hee, S.-M. Choi, and "Fire resistance of concrete filled square steel tube columns subjected to eccentric axial load " Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan,.
- [7] Zhong Taoa, Lin-Hai Hanb, and L.-L. Wanga, "Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire," Fuzhou University, Gongye Road 523, Fuzhou, Fujian Province, 350002, People's Republic of China 2007.
- [8] H. Ravi Kumar, K. U. Muthu, and N. S. Kumar, "Experimental Behavior of Circular HSSCFRC filled steel tubular columns under axial compression," *International Journal of Research in Engineering and Technology*, pp. 111-115, 2013.
- [9] Shilpa Sara Kurian, D. Paulose, and Sreepriya mohan, "Study On Concrete Filled Steel Tube," *IOSR Journal of Mechanical and Civil Engineering*, pp. 25-33, 2016.
- [10] Noorain khanum, E. Ramesh Babu, and Dr N S Kumar, "Behavior of Self Compaction Concrete Filled Steel Tubes (SCC FST) Columns Under Cyclic Loading," Ramanagaram, Karnataka, India 2016.
- [11] Ravi Kumar, Dr muthu, and Dr N S Kumar, "Study on predicting axial load capacity of CFST columns," *J.Inst.Engg India, Springer India*, 2017.
- [12] Specification for coarse and fine aggregate from natural sources for concrete, 9th edition, 1970.
- [13] Recommended guidelines for concrete mix design, 5th edition, 1999.
- [14] Code of practice for plain Reinforced Concrete, Fourth revision, 2000.